} EAG OBJ2

Metadata


Progress

1. ๐Ÿ“Š Gantt

Evaluation Error: SyntaxError: Invalid or unexpected token
    at DataviewInlineApi.eval (plugin:dataview:19027:21)
    at evalInContext (plugin:dataview:19028:7)
    at asyncEvalInContext (plugin:dataview:19038:32)
    at DataviewJSRenderer.render (plugin:dataview:19064:19)
    at DataviewJSRenderer.onload (plugin:dataview:18606:14)
    at DataviewJSRenderer.load (app://obsidian.md/app.js:1:1182416)
    at DataviewApi.executeJs (plugin:dataview:19607:18)
    at DataviewCompiler.eval (plugin:digitalgarden:10763:23)
    at Generator.next (<anonymous>)
    at eval (plugin:digitalgarden:90:61)
mermaid\n" + ganttCode + "\n```");
- Todo
	- [ ] coding for all graphs

---
## 2. Lab meetings
- 2025-09-10
	- [ ] ๋™์ผ ๋ถ€์œ„ ๋ถ€์ฐฉ ํ›„ ์ธก์ • ํšŒ์ฐจ ๋ณ„ ๋ฐ์ดํ„ฐ ์ƒ์ดํ•œ ๋ถ€๋ถ„ : ๋ฐ”๋กœ๋ฐ”๋กœ ์ด๋™ํ•ด์„œ ๊ทธ๋ž˜ํ”„๋ฅผ ๋ณด๋Š” ํ”„๋กœํ† ์ฝœ์„ ๋ฌธ์„œํ™”, ๋ฐ ์‹œ๊ฐํ™”
	- [ ] ํ‚จ๋ฒคํŠธ ๊ฐ„ํ˜น ๋ฐ์ดํ„ฐ ์ €์žฅ์ด ๋˜์ง€ ์•Š๋Š” ๋ฌธ์ œ ์—…์ฒด ํ™•์ธ
		- [ ] ์ˆ˜๋™ ์ €์žฅ์€ ํ•„์š”, offset ๋™๊ธฐํ™” ์žฅ๋น„ - ํ™•์ธ
	- [ ] ย ํ‚จ๋ฒคํŠธ ์ตœ๊ณ  ๋“ฑ๊ธ‰์ธย Excellenceย ๊ตฌ๋… ์‹œ์—๋งŒย CSVย ์ถœ๋ ฅ ๊ฐ€๋Šฅย ๋น„์šฉ์€ย \169,000์›/์›” -> ์—ฐ๊ตฌ๋น„ ์นด๋“œ ๊ฒฐ์ œ๋กœ ๋ฐ”๊พธ๊ธฐ
		- [ ] ๊ฒฐ์ œ ์—ฐ๊ตฌ๋น„ ์นด๋“œ ๋ณ€๊ฒฝ
	- [ ] ์ธก์ • ๋ฐฉ๋ฒ• 50%์—์„œ ์‹œ์ž‘?
		- [ ] ์—ฐ๊ตฌ๋Œ€์ƒ์—ฐ๋ ฅ, ๊ตํ†ต๋น„ ์กฐ์ • -> 60๋ช…์œผ๋กœ ๋ฐ”๊พธ๊ธฐ. xray ๋ฌด๋ฆŽ, ๊ณต์ธ์ฃผ ์—ฐ๊ตฌ์›์ด irb์—์„œ, ๊ด€์ฐฐ์—ฐ๊ตฌ ์ฒซ๋ฒˆ์งธ๋Š” ๊ตํ†ต๋น„, ๋‘๋ฒˆ์งธ๋Š” ๊ธฐํ”„ํ‹ฐ์ฝ˜์œผ๋กœ ์ค€ ์ผ€์ด์Šค ์žˆ๋‹ค. ์Šคํƒ€๋ฒ…์Šค 2.5์ฒœ์› ์ •๋„ ์ฃผ์—ˆ์—ˆ๋‹ค.
	- [ ] ๋…ธ์…˜ ๊ตฌ๋… (๊ฒŒ์ŠคํŠธ์ „ํ™˜), ๋ฐ์ดํ„ฐ git ๋“ฑ์œผ๋กœ ์ด๊ด€ ๊ณ ๋ ค
	- [ ] ์ถฉ์ „์‹œ๊ฐ„ - 50์ผ€์ด์Šค ์ด์ƒ ํ•ด๋„ ์œ ์ง€ ์ค‘

- ๋ถ€๊ฒฝ๋Œ€ 
	- 2025-03-08 % 0308 PRML lab meeting
	- ํ›„์†์—ฐ๊ตฌ ๋ฐ ์กธ์—…๋…ผ๋ฌธ ํšŒ์˜


---

## 1. ์ „์ฒด ์—ฐ๊ตฌ์„ค๊ณ„(Study Design)

1. **์—ฐ๊ตฌ ๋Œ€์ƒ์ž ๋ชจ์ง‘**
    - ๊ฑด๊ฐ• ์„ฑ์ธ 60๋ช…
    - ์„ฑ๋ณ„ ์ธตํ™” ๋ชจ์ง‘
    - ๋Œ€์ƒ์ž ํŠน์„ฑ(ํ‚ค, ์ฒด์ค‘, ๋‚˜์ด, ์„ฑ๋ณ„)์„ ์‚ฌ์ „์— ๊ท ์งˆํ™”

2. **๋™์ž‘๋ณ„ ์‹œํ–‰ ์ˆœ์„œ**
	- ๋Œ€์ƒ์ž ํŽธ์˜ ๋“ฑ์„ ์œ„ํ•˜์—ฌ ์œ ์ง€์‹œ๊ฐ„๊ณผ ํšŸ์ˆ˜(7์ดˆ/5ํšŒโ†’5์ดˆ/3ํšŒ) ์กฐ์ •
    1. ๋ณด์กฐ๊ธฐ ์ ์šฉ X ( side to side / front to rear)
        1. 0โ†’20โ†’50โ†’80โ†’100โ†’80โ†’50โ†’20โ†’0(๋‹จ์œ„ : %, ๋ฐ˜๋ณต์  ์ฒด์ค‘์ง€์ง€, ์ด 45์ดˆ / 3ํšŒ ์ธก์ •)
        2. ๊ตฌ๊ฐ„๋ณ„ ๋ณ€ํ™” ๊ฐ’ ์ƒ์ดํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ
    2. ๋ณด์กฐ๊ธฐ ์ ์šฉ (axilla crutch / wrist crutch)
        1. ๊ฑด์ธก๊ณผ ํ™˜์ธก ๋ชจ๋‘ ์ธก์ •
        2. 0โ†’20โ†’50โ†’80(์ด 20์ดˆ / 3ํšŒ ์ธก์ •)์ ์šฉ, ๋ณด์กฐ๊ธฐ ์ฐฉ์šฉ ์‹œ ๋ฐ˜๋ณตํ•˜์ง€ ์•Š์Œ
        3. ๊ตฌ๊ฐ„๋ณ„ ๋ณ€ํ™” ๊ฐ’ ์ƒ์ดํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ

    - ๊ฐ ๋™์ž‘๋งˆ๋‹ค 7์ดˆ์”ฉ **์œ ์ง€**, ๋™์ž‘ ์ „ํ™˜์„ 1์ดˆ๋กœ ์„ค์ •, ์ด๋ฅผ **5ํšŒ ๋ฐ˜๋ณต**
    - **๋™์ž‘ ์ˆœ์„œ๋ฅผ ๋ฌด์ž‘์œ„ํ™”**(randomization)ํ•˜๊ฑฐ๋‚˜, ์ ์–ด๋„ ๋™์ž‘1โ†’2โ†’3โ€ฆ ์‹์˜ ๊ณ ์ • ์ˆœ์„œ๊ฐ€ ๊ทผํ”ผ๋กœ ๋“ฑ์— ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๋Š”์ง€ ๊ณ ๋ ค
    - ๋งŒ์•ฝ 7๊ฐ€์ง€ ๋™์ž‘ ๋ชจ๋‘๋ฅผ ์‰ฌ๋Š” ์‹œ๊ฐ„ ์—†์ด ์—ฐ์†์œผ๋กœ ํ•˜๋ฉด ํ”ผ๋กœ ๋ˆ„์ ์ด ์ผ์–ด๋‚  ์ˆ˜ ์žˆ์œผ๋‹ˆ, ๋™์ž‘ ์‚ฌ์ด์— ์งง๊ฒŒ ํœด์‹(์˜ˆ: 30์ดˆ~1๋ถ„) ๋ถ€์—ฌ



3. **์ฒด์ค‘๋ถ€ํ•˜(Weight-Bearing) ํ™•์ธ**
    
    - 20%, 50%, 80% PWB ์‹œ **์‹ค์ œ ์ฒด์ค‘๊ณ„** ๋“ฑ์œผ๋กœ ๋Œ€์ƒ์ž๊ฐ€ ๊ฐ๊ฐ์„ ๋งž์ถœ ์ˆ˜ ์žˆ๋„๋ก ์‚ฌ์ „ ์•ˆ๋‚ด
    - ์‹คํ—˜ ์ค‘์—๋„ ๋ฐœ ๋ฐ‘(๋˜๋Š” ์ธก๋ฉด)์— ๊ฐ„์ด ์ฒด์ค‘๊ณ„(๋˜๋Š” ์••๋ ฅ์„ผ์„œ)๋ฅผ ๋‘์–ด ์‹ค์‹œ๊ฐ„ ํ™•์ธํ•˜๊ฑฐ๋‚˜, ์ตœ์†Œํ•œ ๋žœ๋ค ์ฒดํฌ๋ฅผ ํ†ตํ•ด ์ž˜ ์œ ์ง€๋˜๊ณ  ์žˆ๋Š”์ง€ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ฐ€๋Šฅ


4. **EMG ์ธก์ • ์„ธํŒ…**
    
    - ์ธก์ • ๊ทผ์œก ์„ ์ •: ์˜ˆ) ํ•˜์ง€ ๊ทผ์œก(๋Œ€ํ‡ด์‚ฌ๋‘๊ทผ, ํ–„์ŠคํŠธ๋ง, ์ข…์•„๋ฆฌ ๊ทผ์œก), ๋‘”๋ถ€ ๊ทผ์œก(๋‘”๊ทผ), ํ•„์š” ์‹œ ์ƒ์ง€ ๋ณดํ–‰๋ณด์กฐ ์‹œ ๊ฒฌ๊ด€์ ˆ ์ฃผ๋ณ€ ๊ทผ์œก(์‚ผ๊ฐ๊ทผ, ์ƒ์™„์ด๋‘๊ทผ ๋“ฑ) ํฌํ•จ
    - ํ‘œ๋ฉด ๊ทผ์ „๋„(sEMG) ์ „๊ทน ๋ถ€์ฐฉ ์œ„์น˜ ํ‘œ์ค€ํ™”, ํ”ผ๋ถ€ ์ค€๋น„(์ œ๋ชจยท์†Œ๋…), ์ „๊ทน ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ๋™์ผํ•˜๊ฒŒ
    - EMG ์ƒ˜ํ”Œ๋ง ๋ ˆ์ดํŠธ(์˜ˆ: 1kHz ์ด์ƒ), ํ•„ํ„ฐ ์„ค์ •(๋Œ€์—ญํ†ต๊ณผ ํ•„ํ„ฐ 20~450 Hz ๋“ฑ), ๋…ธ์ด์ฆˆ ์ œ๊ฑฐ ์ ˆ์ฐจ ํ™•์ธ


5. **๋™์ž‘๋ณ„ ์ธก์ • ๊ตฌ๊ฐ„**
    
    - ๊ฐ ๋™์ž‘์„ 7์ดˆ๊ฐ„ ์œ ์ง€ํ•œ๋‹ค๊ณ  ํ•  ๋•Œ, **๋ถ„์„ ๊ตฌ๊ฐ„**์€ ๋ณดํ†ต **๊ฐ€์žฅ ์•ˆ์ •๋œ ์ค‘๊ฐ„ 3~5์ดˆ**๋ฅผ ์„ ํƒ
    - ๋™์ž‘ ์ „ํ™˜ ๊ณผ์ •(1์ดˆ)์ด๋‚˜ ์ฒ˜์Œ/๋งˆ์ง€๋ง‰ 1์ดˆ๋Š” ์ž์„ธ๊ฐ€ ํ”๋“ค๋ฆฌ๊ฑฐ๋‚˜ ์ž๋ฆฌ๋ฅผ ์žก๋Š” ๊ตฌ๊ฐ„์ผ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์ œ์™ธ
    - 5ํšŒ ๋ฐ˜๋ณตํ•œ ํ›„, **ํ‰๊ท ๊ฐ’** ๋˜๋Š” **์ตœ๊ณ ๊ฐ’(RMS peak ๋“ฑ)**์„ ์‚ฐ์ถœ

---

## 2. ํ†ต๊ณ„๋ถ„์„(Statistical Analysis) ๊ฐœ์š”

### 2.1 ์ฃผ์š” ๋ณ€์ˆ˜(Outcome Measures)

1. **EMG ํฌ๊ธฐ ์ง€ํ‘œ**
    - ์˜ˆ: RMS (Root Mean Square), ํ‰๊ท  ๊ทผํ™œ์„ฑ๋„(Mean amplitude), ํ˜น์€ ํ†ตํ•ฉ EMG(IEMG)
    - ํ•„์š”ํ•˜๋‹ค๋ฉด **์ •๊ทœํ™”(normalization)**: ์ตœ๋Œ€ ์ˆ˜์˜์  ๋“ฑ์ฒ™์„ฑ ์ˆ˜์ถ•(MVC) ๋Œ€๋น„ %EMG๋กœ ํ™˜์‚ฐ
2. **๊ฐ ๋™์ž‘ ์‹œ ์ฒด์ค‘๋ถ€ํ•˜ ์ •ํ™•๋„**
    - ์‹ค์ œ ์ธก์ •๋œ ์ฒด์ค‘๊ณ„ ๊ฐ’(์˜ˆ: ์–ผ๋งˆ๋‚˜ 20%์— ๊ทผ์ ‘ํ–ˆ๋‚˜)์„ % ์˜ค์ฐจ ๋“ฑ์œผ๋กœ ๊ณ„์‚ฐํ•  ์ˆ˜๋„ ์žˆ์Œ
3. **๋™์ž‘/์ž์„ธ ์•ˆ์ •์„ฑ ์ง€ํ‘œ**
    - ๋งŒ์•ฝ ๋™์ž‘ ์‹œ ์‹ ์ฒด ํ”๋“ค๋ฆผ(CoP ๋ณ€์œ„ ๋“ฑ)์„ ์ธก์ •ํ•œ๋‹ค๋ฉด, ๊ทธ ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉ

### 2.2 ๋ถ„์„ ์„ค๊ณ„

#### A. 7๊ฐ€์ง€ ๋™์ž‘์„ โ€œ๋‹จ์ผ ์š”์ธ(์กฐ๊ฑด)โ€์œผ๋กœ ๊ฐ„์ฃผํ•˜๋Š” ๋ฐฉ๋ฒ•

- **๋ฐ˜๋ณต์ธก์ • ์ผ์›๋ถ„์‚ฐ๋ถ„์„(Repeated-measures ANOVA)**
    - ์š”์ธ(factor): ๋™์ž‘(7์ˆ˜์ค€)
    - ์ข…์†๋ณ€์ˆ˜: ๊ฐ ๊ทผ์œก์˜ EMG (RMS ๋“ฑ)
    - ์‚ฌํ›„๋ถ„์„(Post-hoc): Bonferroni, Tukey ๋“ฑ์œผ๋กœ ๋™์ž‘ ๊ฐ„ pairwise ๋น„๊ต
    - ์ „์ œ ์ถฉ์กฑ(์ •๊ทœ์„ฑ, ๊ตฌํ˜•์„ฑ ๋“ฑ) ํ™•์ธ ํ›„ ํ•„์š”์‹œ ๊ทธ๋ฆฐํ•˜์šฐ์Šค-๊ฐ€์ด์ €(Greenhouse-Geisser) ๋ณด์ •

์ด ๊ฒฝ์šฐ โ€˜PWB 20% vs 50% vs 80%โ€™, โ€˜ํฌ๋Ÿฌ์น˜ ์œ ๋ฌดโ€™, โ€˜Weight shiftโ€™ ๋“ฑ์„ ํ•˜๋‚˜์˜ ๋ฒ”์ฃผ๋กœ ๋ฌถ์–ด 7๋ ˆ๋ฒจ(๋™์ž‘1~7)๋กœ ๋ถ„์„.

- **์žฅ์ **: ๊ฐ„๋‹จํ•˜๊ฒŒ ํ•˜๋‚˜์˜ ANOVA๋กœ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅ
- **๋‹จ์ **: ์–ด๋–ค ์š”์ธ์ด EMG์— ์˜ํ–ฅ์„ ๋งŽ์ด ๋ฏธ์ณค๋Š”์ง€(์˜ˆ: PWB ์ˆ˜์ค€ vs ํฌ๋Ÿฌ์น˜ vs ๋‹จ๋ฐœ์„œ๊ธฐ)๋Š” ๊ตฌ์ฒด์ ์œผ๋กœ ํ•ด์„ํ•˜๊ธฐ๊ฐ€ ๋‹ค์†Œ ๋ชจํ˜ธ

#### B. 2์š”์ธ ๋ฐ˜๋ณต์ธก์ •(factorial) + 1๊ฐ€์ง€ ๋ณ„๋„ ๋™์ž‘์œผ๋กœ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ฐฉ๋ฒ•

1. **๋ฉ”์ธ ์š”์ธ**
    - PWB ์ˆ˜์ค€(3๋‹จ๊ณ„: 20%, 50%, 80%)
    - ๋ณด์กฐ๊ธฐ๊ตฌ ์œ ๋ฌด(2๋‹จ๊ณ„: ์—†์Œ vs forearm crutch)
    - ๋”ฐ๋ผ์„œ **3x2 = 6์ˆ˜์ค€**
2. **๋ณ„๋„ ๋™์ž‘(Weight shift)**
    - ์•„์˜ˆ ๋‹ค๋ฅธ ๋ฉ”์ปค๋‹ˆ์ฆ˜(ํ•œ๋ฐœ์„œ๊ธฐโ†’๋‘๋ฐœ์„œ๊ธฐโ†’๋ฐ˜๋Œ€์ชฝ ํ•œ๋ฐœ์„œ๊ธฐ)์ด๋ฏ€๋กœ, ์ƒ๊ธฐ 6์ˆ˜์ค€๊ณผ ๋ถ„์„์„ ๊ฐ™์ด ๋ฌถ์œผ๋ฉด ํ•ด์„์ด ๋ณต์žก
    - ๋ณ„๋„๋กœ ํ•œ ๋ฒˆ ๋” **๋ฐ˜๋ณต์ธก์ • ANOVA**(๋˜๋Š” ํ‰๊ท  ยฑ ํ‘œ์ค€ํŽธ์ฐจ ๋น„๊ต)๋กœ โ€œ์ขŒ/์šฐ/์–‘๋ฐœ ์ง€์ง€ ์‹œ EMG ์ฐจ์ดโ€๋ฅผ ๋ณผ ์ˆ˜๋„ ์žˆ์Œ

- **2์š”์ธ ๋ฐ˜๋ณต์ธก์ • ANOVA**๋กœ 6๊ฐ€์ง€ ์กฐ๊ฑด(3x2)์— ๋Œ€ํ•œ ๊ทผ์ „๋„ ๋น„๊ต โ†’ ์‚ฌํ›„๋ถ„์„ ์‹œ โ€œPWB ์ˆ˜์ค€ ์ฐจ์ดโ€์™€ โ€œํฌ๋Ÿฌ์น˜ ์œ ๋ฌด ์ฐจ์ดโ€ ํŒŒ์•…
- **๋™์ž‘7(Weight shift)**๋Š” **๋‹ค๋ฅธ ๋™์ž‘**์œผ๋กœ separate ANOVA๋ฅผ ์ง„ํ–‰ํ•˜๊ฑฐ๋‚˜, ํ•œ๋ฐœ์„œ๊ธฐ(A), ๋‘๋ฐœ์„œ๊ธฐ(B) ๊ฐ 7์ดˆ์”ฉ ์ธก์ •๋œ EMG์˜ ์ฐจ์ด(์˜ˆ: A vs B vs ๋‹ค์‹œ Aโ€™)๋„ **๋ฐ˜๋ณต์ธก์ • ANOVA**๋กœ ํ™•์ธ ๊ฐ€๋Šฅ

์ด ๊ตฌ์กฐ๊ฐ€ **์—ฐ๊ตฌ ๊ฐ€์„ค**(์˜ˆ: โ€œPWB ์ˆ˜์ค€๊ณผ ๋ณด์กฐ๊ธฐ ์‚ฌ์šฉ์ด ๊ทผ์ „๋„์— ์œ ์˜๋ฏธํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณด์ด๋Š”๊ฐ€?โ€)์„ ๋ช…ํ™•ํžˆ ํ…Œ์ŠคํŠธํ•˜๊ธฐ์—” ๋” ์ฒด๊ณ„์ ์ž…๋‹ˆ๋‹ค.

#### C. ์ •๊ทœ์„ฑ ์ถฉ์กฑ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ

- ํ‘œ๋ณธ ํฌ๊ธฐ๊ฐ€ ์ž‘๊ฑฐ๋‚˜, EMG ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๊ฐ€ ์‹ฌํ•˜๊ฒŒ ๋น„์ •๊ทœ๋ถ„ํฌ๋ผ๋ฉด
- **Friedman test**(๋น„๋ชจ์ˆ˜์  ๋ฐ˜๋ณต์ธก์ • ๋Œ€์ฒด) ๋˜๋Š” **์„ ํ˜•ํ˜ผํ•ฉ๋ชจํ˜•(Linear Mixed Model)**์œผ๋กœ ๋ถ„์„
- Post-hoc ๋น„๊ต ์‹œ Wilcoxon ๋ถ€ํ˜ธ์ˆœ์œ„ ๊ฒ€์ • ๋“ฑ์„ ์‚ฌ์šฉํ•˜๋˜, ๋‹ค์ค‘๋น„๊ต ๋ณด์ •(Bonferroni ๋“ฑ) ํ•„์ˆ˜

---

## 3. ๋ฐ˜๋ณต ์ธก์ • ํšŸ์ˆ˜์™€ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์š”๋ น

1. **๊ฐ ๋™์ž‘ 5ํšŒ ๋ฐ˜๋ณต โ†’ ํ‰๊ท ๊ฐ’**
    
    - ์˜ˆ: 5๋ฒˆ ์ค‘ ์ค‘๊ฐ„ 3ํšŒ ํ‰๊ท ์„ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜, 5ํšŒ ํ‰๊ท  ์‚ฌ์šฉ
    - ์‹ ๋ขฐ๋„๊ฐ€ ๋†’๋‹ค๋ฉด 5ํšŒ ๋ชจ๋‘์˜ RMS๋ฅผ ๊ตฌํ•ด์„œ ํ‰๊ท  ยฑ ํ‘œ์ค€ํŽธ์ฐจ๋ฅผ ๊ตฌํ•˜๊ณ , **๊ฐœ์ธ๋ณ„ โ€˜๋Œ€ํ‘œ๊ฐ’โ€™์„ ํ•œ ๊ฐ’**์œผ๋กœ ๋งŒ๋“ค์–ด ํ†ต๊ณ„์— ๋„ฃ์Œ
    - ๋งŒ์•ฝ 5ํšŒ ๋ฐ˜๋ณต ๊ฐ„ ๋ณ€๋™์„ฑ์ด ๊ถ๊ธˆํ•˜๋ฉด, **ICC(์‹œํ—˜-์žฌ์‹œํ—˜ ์‹ ๋ขฐ๋„)**๋ฅผ ์‚ฐ์ถœํ•  ์ˆ˜๋„ ์žˆ์Œ
2. **๊ทผ์ „๋„ ์‹ ํ˜ธ์˜ ์•ˆ์ •๊ตฌ๊ฐ„ ์„ค์ •**
    
    - 7์ดˆ ์ค‘ ์ดˆ๋ฐ˜/ํ›„๋ฐ˜ 1์ดˆ๋Š” ์ œ์™ธํ•˜๊ณ , **์ค‘๊ฐ„ 5์ดˆ ๋ฐ์ดํ„ฐ**๋กœ EMG RMS, IEMG ๋“ฑ์„ ์ถ”์ถœ
    - ์ „ํ™˜(Transition) 1์ดˆ๋Š” ๋ณ„๋„ ๋ถ„์„ ์ œ์™ธ

---

## 4. ๊ฒฐ๊ณผ ๋ณด๊ณ  ์‹œ ํ•ต์‹ฌ ํฌ์ธํŠธ

1. **๋‹จ์ˆœ ๋น„๊ต**:
    - โ€œ20%, 50%, 80% PWB์—์„œ ํŠน์ • ๊ทผ์œก์˜ EMG๊ฐ€ ์–ด๋–ป๊ฒŒ ๋‹ฌ๋ž๋Š”์ง€โ€
    - โ€œํฌ๋Ÿฌ์น˜ ์‚ฌ์šฉ vs ๋ฏธ์‚ฌ์šฉ ์‹œ EMG ์ฐจ์ดโ€
    - โ€œWeight shift ์ค‘ ํ•œ๋ฐœ/๋‘๋ฐœ ์ง€์ง€ ์‹œ ๊ทผํ™œ์„ฑ๋„ ์ฐจ์ดโ€
2. **ํ†ต๊ณ„ ์œ ์˜์„ฑ**:
    - ๋ฐ˜๋ณต์ธก์ • ANOVA ๊ฒฐ๊ณผ(์ฃผํšจ๊ณผ main effect, ์ƒํ˜ธ์ž‘์šฉ effect)
    - Post-hoc ๊ฒ€์ • ์‹œ p๊ฐ’, ํšจ๊ณผํฌ๊ธฐ(effect size, ์˜ˆ: partial etaยฒ)
3. **์‹ ๋ขฐ๊ตฌ๊ฐ„**:
    - ํ‰๊ท  ยฑ ํ‘œ์ค€ํŽธ์ฐจ, ํ˜น์€ ํ‰๊ท  ยฑ 95% CI
4. **๊ทธ๋ž˜ํ”„ ์ž‘์„ฑ**:
    - ์กฐ๊ฑด๋ณ„ ๋ง‰๋Œ€๊ทธ๋ž˜ํ”„(์—๋Ÿฌ๋ฐ” ํฌํ•จ)
    - PWB ์ˆ˜์ค€ ๋ณ€ํ™”๋‚˜ ๋™์ž‘ ๊ฐ„ ๊ทผ์ „๋„ ๋ณ€ํ™”๋ฅผ ํ•œ๋ˆˆ์— ํ™•์ธ ๊ฐ€๋Šฅํ•˜๋„๋ก ์‹œ๊ฐํ™”

---

## 5. ์ •๋ฆฌ

1. **์—ฐ๊ตฌ์„ค๊ณ„**:
    - ๊ฐ ํ”ผํ—˜์ž๊ฐ€ 7๊ฐ€์ง€ ๋™์ž‘(์กฐ๊ฑด)์„ ๋ชจ๋‘ ์ˆ˜ํ–‰ํ•˜๋Š” **๋ฐ˜๋ณต์ธก์ •(Within-subject) ๋””์ž์ธ**
    - ๊ฐ ๋™์ž‘์€ 7์ดˆ ์œ ์ง€, ๋™์ž‘ ๊ฐ„ 1์ดˆ ์ „ํ™˜, 5ํšŒ ๋ฐ˜๋ณต โ†’ EMG ์ธก์ •
2. **ํ†ต๊ณ„๋ถ„์„**:
    - **(๊ฐ„๋‹จํžˆ) ์ผ์› ๋ฐ˜๋ณต์ธก์ • ANOVA**: ๋™์ž‘(7์ˆ˜์ค€)์„ ํ•œ๊บผ๋ฒˆ์— ๋น„๊ต
    - **(์ •๊ตํ•˜๊ฒŒ) 2์š”์ธ ๋ฐ˜๋ณต์ธก์ • ANOVA**(PWB ์ˆ˜์ค€ x ํฌ๋Ÿฌ์น˜), + ๋ณ„๋„์˜ Weight shift ๋ถ„์„
    - ์ •๊ทœ์„ฑ ์–ด๋ ค์šฐ๋ฉด **Friedman test** ๋“ฑ ๋น„๋ชจ์ˆ˜ ๊ธฐ๋ฒ• ์ ์šฉ
3. **๋ฐ˜๋ณต ์‹œ๋„ ์ฒ˜๋ฆฌ**:
    - 5ํšŒ ์ค‘ ์•ˆ์ • ๊ตฌ๊ฐ„ EMG๋ฅผ RMS ๋“ฑ์œผ๋กœ ๋ฝ‘์•„ ํ‰๊ท 
    - ํ•„์š”ํ•˜๋‹ค๋ฉด ์‹œํ—˜-์žฌ์‹œํ—˜ ์‹ ๋ขฐ๋„(ICC) ํ•จ๊ป˜ ๋ณด๊ณ 
4. **๊ฒฐ๊ณผ ํ•ด์„**:
    - โ€œPWB ์ˆ˜์ค€๋ณ„, ๋ณด์กฐ๊ธฐ๊ตฌ ์‚ฌ์šฉ๋ณ„, ํ˜น์€ ํ•œ๋ฐœ์„œ๊ธฐ/์–‘๋ฐœ์„œ๊ธฐ ์‹œ ๊ทผ์œกํ™œ์„ฑ๋„ ์ฐจ์ด๊ฐ€ ์œ ์˜๋ฏธํ•œ์ง€โ€
    - ์‹ค์ œ๋กœ๋Š” ๊ทผํ™œ์„ฑ๋„, ๊ด€์ ˆ ๊ฐ๋„, ์ฒด์ค‘์ง€์ง€ ํŽธ์ฐจ ๋“ฑ ์—ฌ๋Ÿฌ ์ง€ํ‘œ๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ํ•ด์„

์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋กœ ์ง„ํ–‰ํ•˜๋ฉด, **์ฒด์ค‘๋ถ€ํ•˜ ์ˆ˜์ค€ยท๋ณด์กฐ๊ธฐ ์‚ฌ์šฉ์ด ๊ทผ์ „๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ** ๋ฐ **ํ•œ๋ฐœ์„œ๊ธฐ์™€ ์–‘๋ฐœ์„œ๊ธฐ์˜ ๊ทผํ™œ์„ฑ๋„ ์ฐจ์ด**๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.  
๋˜ํ•œ **๋™์ž‘ ๊ฐ„ ํ”ผ๋กœ๋„ ๋ˆ„์ **, **์ž์„ธ ์žก๋Š” ์ˆ™๋ จ๋„ ์ฐจ์ด**๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด **์ถฉ๋ถ„ํ•œ ํœด์‹**, **๋ฌด์ž‘์œ„ ์ˆœ์„œ**(๋™์ž‘ ์ˆ˜ํ–‰ ์ˆœ์„œ ๋žœ๋คํ™”) ๋“ฑ์„ ๊ณ ๋ คํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•ฉ๋‹ˆ๋‹ค.


---
# Stage 0. Env, Data Source
- Env 
	- Jupyter lab & R
- Data source
	- file path : C:\\Users\\Jaehyun\\OneDrive - ๊ณ ์‹ ๋Œ€ํ•™๊ต\\project\\EAG
	- Coding file : drawplot2.ipynb, stat.ipynb, EAGstat.R
	- Shared data : AWS(ID: sense0906@gmail.com / PW: )
- equipments
	- [๊ฒจ๋“œ๋ž‘์ด ๋ชฉ๋ฐœ](https://smartstore.naver.com/medihs/products/9216778646)
	- [์†๋ชฉ ๋ชฉ๋ฐœ](https://smartstore.naver.com/sodak/products/10285837541?n_media=643599&n_rank=5&n_ad_group=grp-a001-02-000000046084739&n_ad=nad-a001-02-000000329856990&n_campaign_type=2&n_mall_id=ncp_1ol90t_01&n_mall_pid=10285837541&n_ad_group_type=2&n_match=3&NaPm=ct%3Dm8xtqb60%7Cci%3D0Ay0001jeIHBTAWL%2Df1L%7Ctr%3Dplas%7Chk%3D1e8d923f68294238556662bbfee97b32407c7bbf%7Cnacn%3DQOI3BcAeFZf4A)
	- [ํž˜ํŒ](https://smartstore.naver.com/snsi/products/8246319568?NaPm=ct%3Dm8y2uew8%7Cci%3Dc812b14443bf4d60095b00728f9a55df0890d1b3%7Ctr%3Dslsl%7Csn%3D460819%7Chk%3Da937cbcb31d86f7897e2c8dcf210e36bd84abeb9&nl-au=5325aff18265438fb1b0234b79d8cb63&nl-query=k+force+plate)
- Kinvents setting
- ํ”„๋กœํ† ์ฝœ
	- ๋‹ค์ด๋‚˜๋ฏน๋ฆฌํฌํŠธ1 - ์ขŒ์šฐ ๋ฐฉํ–ฅ ์ฒด์ค‘ ์ด๋™
		- ์ค€๋น„ 5์ดˆ
		- 1์„ธํŠธ
		- ์ง€์†์‹œ๊ฐ„ 50์ดˆ
			- ๋‘๋ฐœ์„œ๊ธฐ 7
			- ํ•œ๋ฐœ์„œ๊ธฐ 7
			- ๋‘๋ฐœ์„œ๊ธฐ 7
			- ๋ฐ˜๋Œ“๋ฐœ ํ•œ๋ฐœ์„œ๊ธฐ 7
		- ๋‹ค์Œ๋™์ž‘ ์ „ํ™˜ - ์ž๋™(7์ดˆ ์นด์šดํŠธ ๋‹ค์šด)
	- ๋‹ค์ด๋‚˜๋ฏน๋ฆฌํฌํŠธ2 - ์ „ํ›„ ๋ฐฉํ–ฅ ์ฒด์ค‘ ์ด๋™
		- ์ค€๋น„ 5์ดˆ
		- 1์„ธํŠธ
		- ์ง€์†์‹œ๊ฐ„ 50์ดˆ
			- ๋‘๋ฐœ์„œ๊ธฐ 7
			- ํ•œ๋ฐœ์„œ๊ธฐ 7
			- ๋‘๋ฐœ์„œ๊ธฐ 7
			- ๋’ท๋ฐœ ํ•œ๋ฐœ์„œ๊ธฐ 7
		- ๋‹ค์Œ๋™์ž‘ ์ „ํ™˜ - ์ˆ˜๋™
	- ๋‹ค์ด๋‚˜๋ฏน๋ฆฌํฌํŠธ3 - ๊ฒจ๋“œ๋ž‘์ด ๋ชฉ๋ฐœ์„ ์ด์šฉํ•œ ๋ถ€๋ถ„ ์ฒด์ค‘ ๋ถ€ํ•˜
		- ์ค€๋น„ 5์ดˆ
		- 3์„ธํŠธ
			- ์„ธํŠธ๊ฐ„ ํœด์‹ 10์ดˆ
		- ์ง€์†์‹œ๊ฐ„ 40(35)์ดˆ
			- ๋ฐ˜๋Œ“๋ฐœ ํ•œ๋ฐœ์„œ๊ธฐ 7
			- ํ•œ๋ฐœ(20%) + ๋ฐ˜๋Œ€์ธก ์ƒ์ง€ ๋ชฉ๋ฐœ (80%) 7
			- ํ•œ๋ฐœ(50%) + ๋ฐ˜๋Œ€์ธก ์ƒ์ง€ ๋ชฉ๋ฐœ (50%) 7
			- ํ•œ๋ฐœ(80%) + ๋ฐ˜๋Œ€์ธก ์ƒ์ง€ ๋ชฉ๋ฐœ (20%) 7
			- ํ•œ๋ฐœ์„œ๊ธฐ(100%) 7
		- ๋‹ค์Œ๋™์ž‘ ์ „ํ™˜ - ์ˆ˜๋™
	- ๋‹ค์ด๋‚˜๋ฏน๋ฆฌํฌํŠธ4 - ์†๋ชฉ ๋ชฉ๋ฐœ์„ ์ด์šฉํ•œ ๋ถ€๋ถ„ ์ฒด์ค‘ ๋ถ€ํ•˜
		- ์ค€๋น„ 5์ดˆ
		- 3์„ธํŠธ
			- ์„ธํŠธ๊ฐ„ ํœด์‹ 10์ดˆ
		- ์ง€์†์‹œ๊ฐ„ 40(35)์ดˆ
			- ๋ฐ˜๋Œ“๋ฐœ ํ•œ๋ฐœ์„œ๊ธฐ 7
			- ํ•œ๋ฐœ(20%) + ๋ฐ˜๋Œ€์ธก ์ƒ์ง€ ๋ชฉ๋ฐœ (80%) 7
			- ํ•œ๋ฐœ(50%) + ๋ฐ˜๋Œ€์ธก ์ƒ์ง€ ๋ชฉ๋ฐœ (50%) 7
			- ํ•œ๋ฐœ(80%) + ๋ฐ˜๋Œ€์ธก ์ƒ์ง€ ๋ชฉ๋ฐœ (20%) 7
			- ํ•œ๋ฐœ์„œ๊ธฐ(100%) 7
		- ์ค‘์ง€
# Stage 1 Define variables & statistics
## stage 1.1. Descriptive definitions

1.1.1. Definitions of background knowledge

- Joint movement : distal or/and proximal part of joint were moved and relative position is change. active and passive are possible and usually joint has its own movement axis according to its anatomy
- Joint load : loading applied on cartilage contact surface within joint, mainly by gravity or muscle contraction
- PA(Physical activity) : joint movement + joint load, usually has the purpose to strengthen the muscle
    - Q-setting : chair sitting(90 degree flexion), knee extension to end range(0 degree) and holding with maximal effort and return to initial position
    - Squat : bipedal stance(0 degree) with shoulder width, squat till 90 degree knee flexion and stand-up
    - Passive knee extension : side lying 90 degree flexion, passive knee extension to end range(0 degree) by examiner without any muscle contraction and return to initial position
- Surface EAG : detect cartilage generated potentials on skin surface which pre-determined electrode position

1.1.2. Definitions of EAG parameters

- IEP(initial electric potential): baseline EAG potentials before movement or PA
- EEP(end electric potential): final EAG potentials after movement or PA
- MIP: amount of joint movement-induced potential changes between IEP and EEP
    - MIP amplitude = EEP - IEP (by only passive movement)
- PIP: amount of PA-induced potential changes between IEP and EEP
    - PIP amplitude = EEP - IEP (by PA)
- LIP: amount of generated potentials from only cartilage load
    - LIP amplitude = PIP - MIP (by only joint load)
- Potentials from other than cartilage
    - Drift
    - Confounding factors affecting surface EAG : mostly unspecified to date.

## stage 1.2. Quantification

1.2.1. Qualitative analysis of the EAG potential

- ๊ฐœ์š” : PIP๋Š” ๊ด€์ ˆ์ด ์›€์ง์ด๋Š” ๋™์•ˆ ๋ฐœ์ƒํ•˜๋Š” ๋น„๊ต์  ํฐ ํฌ๊ธฐ์˜(๋•Œ๋•Œ๋กœ ๋งค์šฐ ํผ) ํ•˜๊ฐ• ํ˜น์€ ์ƒ์Šน, ์ด์–ด์„œ ์›€์ง์ž„ ์งํ›„ ๋ณ€ํ™”๋œ ๊ฐ๋„๊ฐ€ ์œ ์ง€๋˜๋Š” ๋™์•ˆ์•ˆ ์ ์ง„์ ์œผ๋กœ ์ฒœ์ฒœํžˆ ํ•˜๊ฐ•(๊ธฐ์šธ๊ธฐ ๊ฐ์†Œ)ํ•˜์—ฌ flat ํ•ด ์ง€๋Š” ๋ณ€ํ™”๋กœ ๋‹ค์‹œ ๋‚˜๋‰จ. (์˜ˆ์‹œ1: subject 4 (๊น€๋ณ‘์ค€) - channel 5)
    
    - ์ฆ‰ PIP ์˜ 2๊ฐ€์ง€ component๊ฐ€ ์žˆ๊ณ , ์ด๋ฅผ ์•„๋ž˜ ๋‘ ๊ฐ€์ง€๋กœ decomposition ํ•  ์ˆ˜ ์žˆ๋‹ค.
        1. PIP_D(potential during PA)
        2. PIP_A(potential after PA)
    
    1. PIP_D : baseline shifting, randomly
        
        - ==๊ทธ ๋™์•ˆ ์˜๋ฌธ์ด์—ˆ๋˜ signal reversal์˜ ์›์ธ. ์–ด๋А ๋ฐฉํ–ฅ์œผ๋กœ ์›€์ง์ผ์ง€ ์˜ˆ์ธก๋ถˆ๊ฐ€==
        - ๋ฌด๋ฆŽ์ด ์›๋ž˜ ์ž์„ธ๋กœ ๋Œ์•„๊ฐ€๋Š” ๊ณผ์ • (returning to baseline position)์—์„œ potential๋„ ์›๋ž˜๋กœ ๋Œ์•„๊ฐ€๋‚˜ ์˜ˆ์™ธ๋„์žˆ์Œ.
        
        1. PIP_A์™€ ๋ฐ˜๋Œ€๋ฐฉํ–ฅ(์ „์œ„ ์ƒ์Šน)์œผ๋กœ ๋ฐœ์ƒ
            - amplitude of PIP_D > PIP_A : PIP is negative value
            - amplitude of PIP_D < PIP_A : PIP is positive value (or amplitude is very small)
        2. PIP_A์™€ ๊ฐ™์€ ๋ฐฉํ–ฅ(์ „์œ„ ํ•˜๊ฐ•, ๊ฐ€์žฅ ๋†’์€ ๋นˆ๋„๋กœ ๊ด€์ฐฐ)์œผ๋กœ ๋ฐœ์ƒ
            - PIP amplitude is always negative value (sometimes very large)
            - ๊ฐ™์€ ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ƒํ•˜๋ฉด, ๊ธฐ์šธ๊ธฐ๊ฐ€ ๋‹ฌ๋ผ์ง€๋Š” ๋ณ€๊ณก์ ์„ ์ฐพ์•„์•ผ ํ•จ.
                - ๋ณ€๊ณก์ ์„ ์ฐพ๊ธฐ ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ์žˆ์Œ
                    - ๋ณ€๊ณก์ ์ด ๋ช…ํ™•ํ•œ ์ฑ„๋„์„ ๊ธฐ์ค€์œผ๋กœ PA ๊ฐ€ ๋ฉˆ์ถ˜ ์ง€์ ์„ ๋‹ค๋ฅธ ์ฑ„๋„์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์Œ.
    2. PIP_A: gradual flattening, consistently
        - ์ ์ง„์ ์œผ๋กœ ๊ธฐ์šธ๊ธฐ๊ฐ€ ์ค„์–ด๋“ค์–ด flat ํ•ด์ง€๋Š”(ํ˜น์€ drift๋ฅผ ๋ฐ˜์˜ํ•˜๋Š”) potential graph๋ฅผ ๋ณด์—ฌ์คŒ
        - ๋ฌด๋ฆŽ์ด ์›๋ž˜ ์ž์„ธ๋กœ ๋Œ์•„๊ฐ€๋Š” ๊ณผ์ • (returning to baseline position)์—์„œ potential๋„ ๋Œ€์นญ์ ์ธ ๋ชจ์Šต์œผ๋กœ ๋ฐœ์ƒ
            - ์˜ˆ์‹œ : decrease with gradual flattening VS increase with gradual flattening
    3. PIP_D vs PIP_A between PA
        - PIP_D๋Š” 3๊ฐ€์ง€ PA(Q-setting / Squat / Passive knee extension)๊ฐ„์˜ ๋ชจ์–‘ ๋ฐ ํฌ๊ธฐ variability ๊ฐ€ PIP_A์— ๋น„ํ•ด ํ›จ์”ฌ ํฌ๋‹ค.
        - PIP_A๋Š” Q-setting๊ณผ Passive knee extension ๊ฐ„์— ๋ชจ์–‘์ด ๋น„๊ต์  ์ž˜ ์œ ์ง€๋œ๋‹ค. ํฌ๊ธฐ๋Š” ๋น„์Šทํ•˜์ง€๋งŒ Qsetting์ด ๋” ํฐ ๊ฒฝํ–ฅ

1.2.2. decomposition & labeling

- ์˜ˆ์ „ ๋ถ„์„๋ฐฉ๋ฒ• : phase decomposition by second
    - **ํฐ ์˜ค์ฐจ๋กœ ์ธํ•ด 5๊ฐœ์˜ point๋ฅผ manual labeling ํ•˜๋Š” ํ˜„์žฌ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ณ€๊ฒฝ.**
- ํ˜„์žฌ ๋ถ„์„๋ฐฉ๋ฒ• : Graph decomposition into phases by manual labeling
    - 5 points between 6 phases
        - P1 : initial point of PA, IEP
        - P2 : end point of PA, EEP
        - P3 : initial point of return PA
        - P4 : end point of return PA
        - P5 : initial point of flat potential
    - 6 phases decomposed by 5 point
        - Pre-phase : before PA : flat potential
        - phase 1 : During PA : PIP_D
        - phase 2 : During 6sec after PA : PIP_A
        - phase 3 : During return PA : return PIP_D
        - phase 4 : During 6sec after return PA : return PIP_A
        - End-phase : from initial point of flatten potential to end

# Stage 2. ๊ฐ€์„ค & ์‹คํ—˜์„ค๊ณ„

## Stage 2.1. Hypothesis to investigate

- ๋ฌด๋ฆŽ์˜ ์›€์ง์ž„๋™์•ˆ ์œ ์˜ํ•œ surface EAG potential์˜ ์ฐจ์ด๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค.
    - H1: ๊ฐ PA์—์„œ knee angle์— ๋”ฐ๋ฅธ ์ „์œ„์ฐจ๊ฐ€ ์žˆ๋‹ค.
    - ๊ฐ knee angle์—์„œ ์ฒด์œ„์— ๋”ฐ๋ฅธ ์ „์œ„์ฐจ๊ฐ€ ์žˆ๋‹ค.(์• ๋งคํ•œ ๋ถ€๋ถ„)
	 - ์•„๋ž˜ ๋‘๋ฒˆ์งธ, ๊ฐ PA๊ฐ„์˜ ์ „์œ„์ฐจ ๋น„๊ต ํ†ต๊ณ„๋กœ ๋Œ€์ฒด
	 - but pre-phase์˜ potential์ด ๋‹ค๋ฅด๋‹ค๋ฉด 0์œผ๋กœ ๋ณด์ •ํ•ด์ค„ ํ•„์š”๋Š” ์žˆ๊ฒ ๋‹ค.
    - H2: ๊ฐ ์ฒด์œ„๋ณ„ knee angle์—์„œ ์ „๊ทน์œ„์น˜์— ๋”ฐ๋ฅธ ์ „์œ„์ฐจ๊ฐ€ ์žˆ๋‹ค.
- H3: LIP detection according to electrode position
    - ๋Šฅ๋™์šด๋™์œผ๋กœ ์œ ๋ฐœ๋œ ์ „์œ„์™€ ์ˆ˜๋™์šด๋™์‹œ ์œ ๋ฐœ๋œ ์ „์œ„์˜ ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค.
    - ๋Šฅ๋™์šด๋™ ๊ฐ„์˜ ์ „์œ„ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค.
        - PIP_D
        - PIP_A
        - PIP_D + PIP_A
    - H4 : ์ „๊ทน ์œ„์น˜์— ๋”ฐ๋ฅธ ์ „์œ„ ์ฐจ์ด๊ฐ€ ์žˆ๋‹ค.

## Stage 2.2 Experiments & statistical analysis
- Subjects enroll
	  - 20 subjects with 8 channel
    - perform 3 repetition of each 3 PA
 - Statistical analysis
	- H1 : each PA
		- PIP ; mean potential of pre-phase vs end potential of phase 2
		- PIP_D ; mean potential of pre-phase vs P2 potential
		- PIP_A ; P2 potential vs P4 potential - ์ค‘์š”
			- subgoup analysis for channel in each PA (์ฐจ์ด๋ฅผ ๋ณด์ด๋Š” ์ฑ„๋„์—์„œ๋งŒ H2 ์œผ๋กœ ์ง„ํ–‰? ํ˜น์€ ์ „๋ถ€ H2์„ ์‹œํ–‰ํ•˜์ง€๋งŒ ๊ณ ์ฐฐ์—์„œ ๊ฐ•์กฐ..?)
	- H2 : delta value of above parameters between PAs (q vs p, q vs s)
		- delta value subgroup comparison according to channel. (PA๊ฐ„ ์œ ์˜ํ•œ ์ฑ„๋„์ด ๋‹ค๋ฅด๋‹ค๋ฉด..H1 subgroup analysis์—์„œ๋„ ์ฐจ์ด๋ฅผ ์ž˜ ๋ณด์ด๋ฉด์„œ ์—ฌ๊ธฐ์„œ๋„ ์ฐจ์ด๋ฅผ ์ž˜๋ณด์ด๋Š” ์ฑ„๋„์„ ์ถ”์ฒœํ•˜๊ฒ ๋‹ค. ํ˜น์€ ๋‘๊ฐ€์ง€๋ฅผ ๊ฐ™์ด ๋ณด์—ฌ์ฃผ๋Š” ํ•˜๋‚˜์˜ ํ†ต๊ณ„๋ฅผ ๋Œ๋ฆฌ๊ณ  ๊ณ ์ฐฐ์—์„œ ๋‘ ๊ฐ€์ง€๋ฅผ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ..?)
	- H3 : potential amplitue of PA vs returning PA
		- eccentric or upward movements๊ฐ€ concentric or downward movement ์™€๋น„๊ตํ•˜์—ฌ, ์ฆ‰ loading ๊ณผ unloading ์‚ฌ์ด์—์„œ ์œ ๋ฐœ์ „์œ„์˜ ์ฐจ์ด๊ฐ€ ์žˆ๋Š”๊ฐ€

- for compensating subject variability
	 - PA๋ฅผ ํ•  ๋•Œ ๋Œ€์ƒ์ž ๊ฐ„์˜ EAG amplitude์˜ ํฌ๊ธฐ๋Š” ํฐ ํ‘œ์ค€ํŽธ์ฐจ๋ฅผ ๋ณด์ž„
	 - ์ด์ „ ๋…ผ๋ฌธ์—์„œ static weight shift์—์„œ 20๋ช…์˜ ๋Œ€์ƒ์ž๊ฐ„ (๊ด€์ ˆ๋ฉด ์ธก๋ฉด์œ„์น˜์—์„œ) ๋น„์Šทํ•œ ํฌ๊ธฐ์˜ ์ „์œ„ ๊ด€์ฐฐ.
		- ๊ฐ€์„ค 1 : ์ „๊ทน ์œ„์น˜์˜ ๋ถˆ์ผ์น˜ : ์‹ ๋ขฐ๋„๊ฐ€ ๋†’์€ ์ „๊ทน ์œ„์น˜๋งŒ ์„ ์‚ฌ์šฉ(์‚ฌ์ „์—ฐ๊ตฌ์—์„œ๋Š” ๋‚ด์ธก ๊ด€์ ˆ๋ฉด) or ํ‘œ๋ฉดํ•ด๋ถ€ํ•™ ์‚ฌ์šฉ ๋ฐ ์ˆ™๋ จ๋„
		- ๊ฐ€์„ค 2 : Weight shift ๋ณด๋‹ค 90๋„-0๋„ ์›€์ง์ž„์ด ๊ฐœ์ธ๋ณ„ ํ•ด๋ถ€ํ•™์  ์ฐจ์ด๊ฐ€ ํผ (patellar tracking ์ฐจ์ด๊ฐ€ ์žˆ๋Š” ๋“ฑ..)
    - Proportional value ๋กœ ๋Œ€์ฒด ํ˜น์€ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ• ์‚ฌ์šฉ
    - ๋Œ€์ƒ์ž๊ฐ„ ์ธ๊ตฌํ•™์ ์š”์†Œ ์ฐจ์ด(ํ‚ค, ๋ชธ๋ฌด๊ฒŒ, BMI, knee circumference, knee arrangement)์˜ ๋ณด์ •: multivariable analysis or ANCOVA
- potential comparison: ==paired-T==    
    - if compare 3 group : use RM ANOVA
- ํ•„์š”ํ•œ ๋ถ€๋ถ„    
    - test-retest reliability of EAG

---
# Stage 3. Documentation


## 3.1. Target journal
- JOR - reject at 2025.02.
- ์ด ํ›„ ํ›„๋ณด๋“ค

1. BMC Musculoskeletal Disorders (Springer Nature) - IF: 2.2
	- ๋ถ„์•ผ: ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜, ์ •ํ˜•์™ธ๊ณผ, ๋ฌผ๋ฆฌ์น˜๋ฃŒ, ์žฌํ™œ
	- ํŠน์ง•: ํŒŒ์ผ๋Ÿฟ ์Šคํ„ฐ๋”” ๋“ฑ ์ž„์ƒยท์—ฐ๊ตฌ ํ˜‘์—… ์˜ˆ๋น„ ๋ฐ์ดํ„ฐ๋„ ๊ฒŒ์žฌ ์‚ฌ๋ก€ ์žˆ์Œ

2. Journal of Experimental Orthopaedics (Springer) - IF: 2.0
	 - ๋ถ„์•ผ: ์ •ํ˜•์™ธ๊ณผ ๋ถ„์•ผ ์ „์ž„์ƒยท์ž„์ƒ ์—ฐ๊ตฌ
	 - ํŠน์ง•: ํ˜์‹ ์  ์žฅ์น˜ยท์ธก์ •๊ธฐ๋ฒ•, ์˜ˆ๋น„ ์—ฐ๊ตฌ๋„ ๊ฒŒ์žฌ ์‚ฌ๋ก€๊ฐ€ ์žˆ์œผ๋ฉฐ ์ž„์ƒ ํ™•์žฅ์„ฑ ๊ฐ•์กฐ ํ•„์š”

3. Acta of Bioengineering and Biomechanics (Polish Academy of Sciences) - IF: 0.8
	- ๋ถ„์•ผ: ์ƒ์ฒด์—ญํ•™, ์ƒ์ฒด์žฌ๋ฃŒ, ์žฌํ™œ๊ณตํ•™ ๋“ฑ ๊ด‘๋ฒ”์œ„
	- ํŠน์ง•: ๋ฌด๋ฆŽ ๊ด€์ ˆ ์—ญํ•™ ๋ฐ ์ธก์ •๊ธฐ๋ฒ• ์—ฐ๊ตฌ, ์†Œ๊ทœ๋ชจ ์˜ˆ๋น„์—ฐ๊ตฌ๋„ ๋น„์Šทํ•œ ๊ฒŒ์žฌ ์‚ฌ๋ก€๊ฐ€ ์žˆ์Œ. ์ •ํ˜•์™ธ๊ณผ-๊ณตํ•™ ์œตํ•ฉ ์—ฐ๊ตฌ๋ฅผ ์ ๊ทน์ ์œผ๋กœ ์ˆ˜์šฉ.

4. Muscles, Ligaments and Tendons Journal (MLTJ) - IF: 0.5
    - ๋ถ„์•ผ: ๊ทผ์œก, ์ธ๋Œ€, ๊ฑด(tendon) ๊ด€๋ จ ๊ธฐ์ดˆยท์ž„์ƒ ์—ฐ๊ตฌ
    - ํŠน์ง•: ์ •ํ˜•์™ธ๊ณผ, ์Šคํฌ์ธ ์˜ํ•™, ์žฌํ™œ์˜ํ•™์„ ๋ชจ๋‘ ์•„์šฐ๋ฅด๋ฉฐ ๋ฌด๋ฆŽ ๊ด€์ ˆ๊ณผ ์ฃผ๋ณ€ ์กฐ์ง(์—ฐ๊ณจ ํฌํ•จ)์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ‰๊ฐ€ ๋ฐฉ๋ฒ•์ด๋‚˜ ํŒŒ์ผ๋Ÿฟ ์—ฐ๊ตฌ๋„ ์ˆ˜์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ํผ.


5. Cartilage (SAGE) - IF: 2.7
	 - ๋ถ„์•ผ: ์—ฐ๊ณจ(๊ธฐ์ดˆยท์ž„์ƒยท์žฌ์ƒยท์ƒ์ฒด์—ญํ•™ ๋“ฑ) ํŠนํ™”
	 - ํŠน์ง•: ์—ฐ๊ณจ ๊ด€๋ จ ์ƒˆ๋กœ์šด ํ‰๊ฐ€ยท์ง„๋‹จ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ์— ์œ ๋ฆฌ, **์†Œ๊ทœ๋ชจ ์ƒ˜ํ”Œ**์— ๋Œ€ํ•œ ํ†ต๊ณ„์  ํŒŒ์›Œ ์ง€์ ์ด ์žˆ์„ ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ, ํŒŒ์ผ๋Ÿฟ ์—ฐ๊ตฌ์ž„์„ ๋ช…ํ™•ํžˆ ๊ฐ•์กฐํ•˜๊ณ  ํ–ฅํ›„ ํ™•์žฅ ๊ฐ€๋Šฅ์„ฑ์„ ์ž˜ ์„œ์ˆ ํ•ด์•ผ ํ•จ.



### ์ •๋ฆฌ

6. **Sensors**
7. **Gait & Posture**
8. **BMC Musculoskeletal Disorders**
9. **Medical & Biological Engineering & Computing**
10. **Cartilage**
11. **Journal of Experimental Orthopaedics**

์œ„ ์ˆœ์„œ๋Š” ์ตœ๊ทผ๋…„๋„์˜ **์ถ”์ • Impact Factor**์— ๊ธฐ๋ฐ˜ํ•œ **๋Œ€๋žต์ **์ธ ๋†’์€ ์ˆœ์—์„œ ๋‚ฎ์€ ์ˆœ ๋ฐฐ์—ด์ž…๋‹ˆ๋‹ค. ํˆฌ๊ณ  ์ „, ๊ฐ ์ €๋„์˜ ์ตœ์‹  IF์™€ **Aim & Scope**, ํˆฌ๊ณ  ๊ทœ์ •(Author Guidelines)์„ ๊ผญ ํ™•์ธํ•˜์‹œ๊ณ , ์—ฐ๊ตฌ์˜ โ€˜ํŒŒ์ผ๋Ÿฟ ์Šคํ„ฐ๋””โ€™ ํŠน์„ฑ, ์—ฐ๊ตฌ ํ˜์‹ ์„ฑ(๋น„์นจ์Šต ์ธก์ •๋ฒ•), ์ž„์ƒ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ž˜ ๊ฐ•์กฐํ•˜์—ฌ ํˆฌ๊ณ  ์ „๋žต์„ ์„ธ์šฐ๋ฉด ๋„์›€์ด ๋  ๊ฒƒ์ž…๋‹ˆ๋‹ค.



## 3.2. Results & Discussion point(Important only, ์ถ” ํ›„ ํ•ด๋‹น draft์— ์ž‘์„ฑ)
- ๊ฒฐ์ธก ์ฑ„๋„

|   |  stretch |p-stretch   |
|---|---|---|
|subject1|||
|subject2|||
|subject3||N|
|subject4|||
|subject5|||
|subject6|||
|subject7|||
|subject8|||
|subject9||N|
|subject10|||
|subject11|||
|subject12|N|N|
|subject13||N|
|subject14|||
|subject15|N||
|subject16|||
|subject17|||
|subject18|||
|subject19|||
|subject20|N||
- ์˜๋ฏธ
	- ๋™์ž‘์˜ ๊ตฌ๋ถ„
	- ์—ฐ๊ณจ์ „๋„์˜ ๊ฒ€์ถœ
		- ๋‹ค์ด๋‚˜๋ฏน ๋กœ๋”ฉ์ด๋ฏ€๋กœ pip-a ๋ฅผ ์—ฐ๊ณจ์— ๊ฐ€ํ•ด์ง„ ํž˜์ด๋ผ๊ณ  ๊ฐ€์ •ํ•˜๊ณ (์ฐธ๊ณ ๋ฌธํ—Œ), ๋Šฅ๋™ ์ˆ˜๋™๊ฐ„์˜ ํ†ต๊ณ„์  ์ฐจ์ด๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” ์ฑ„๋„์„ ๋‹ค์ด๋‚˜๋ฏน๋กœ๋”ฉ์„ ๊ฒ€์ถœํ•˜๋Š”๋ฐ ์œ ์˜ํ•œ ์ฑ„๋„์œ„์น˜๋กœ ํ•˜๊ฒ ๋‹ค.
		- 1, 4๋ฒˆ
- ์ฑ„๋„๋ณ„ ์‹ ๋ขฐ๋„
	- ๋Œ€๋ถ€๋ถ„์˜ ์‚ฌ๋žŒ์—์„œ ๋น„์Šทํ•˜๊ฒŒ ๋ถ€์ฐฉ๋œ ์œ„์น˜๊ฐ€ ๋น„์Šทํ•œ ์–‘์ƒ์„ ๋ณด์ด๋ฉด.. ์ฑ„๋„๊ฐ„ ํฌ๊ธฐ์ฐจ์ด๋ฅผ ํ‰๊ท ๋‚ด๊ฑฐ๋‚˜.. CH1์„ ๊ธฐ์ค€์œผ๋กœ ๋ณด์ •ํ•ด๋ณผ์ˆ˜ ์žˆ๊ฒ ๋‹ค..(์•„๋‹ˆ๋ฉด ์ „์ฒด ํฌ๊ธฐ๋ฅผ ๋ณด๊ณ  ๋ณด์ •..?)
		- ๋ณด์ •๋ฐฉ๋ฒ•
			- ์ฑ„๋„๊ฐ„ ํฌ๊ธฐ์ฐจ์ด ํ‘œ์ค€ํ™”
			- ์ œ์ผํฐ ์ฑ„๋„๊ธฐ์ค€ ๋ณด์ •
- ๋Šฅ๋™๊ณผ ์ˆ˜๋™์—์„œ PIP_A ์ฐจ์ด(SGP, O1H2)
- ![Pasted image 20231121125445.png](/img/user/Attachments/Pasted%20image%2020231121125445.png)
![Pasted image 20231121140021.png](/img/user/Attachments/Pasted%20image%2020231121140021.png)
![Pasted image 20231101042259.png](/img/user/Attachments/Pasted%20image%2020231101042259.png)

- ๋Šฅ๋™๊ณผ ์ˆ˜๋™์—์„œ PIP_D ์ผ์น˜๋„
	 ![Pasted image 20231101055657.png](/img/user/Attachments/Pasted%20image%2020231101055657.png)
- ์ฑ„๋„๋ณ„ PIP_D ์ผ์น˜๋„
	 ![Pasted image 20231101061142.png](/img/user/Attachments/Pasted%20image%2020231101061142.png)
- ์ฑ„๋„๋ณ„ ํŠน์ง•
	- ch1
		- EAG๊ฐ€ ์ œ์ผ ํฌ๊ณ  ์šด๋™์— ๋”ฐ๋ฅธ ๋ณ€๋ณ„๋ ฅ์žˆ์Œ(ch4๋„).
	- ch8
		- PIP-D: stretch์—์„œ ์ „๋ถ€ ํ•˜๊ฐ•(pstretch์—์„œ๋Š” ๋Œ€๋ถ€๋ถ„)
		- PIP-A: pstretch์—์„œ ์ „๋ถ€ ์ƒ์Šนdrift (stretch๋„ ์ข…์ข…)
- Subject๋ณ„ ํŠน์ง•
	- sb14
		- stretch์—์„œ EAG๊ฐ’์ด ์ œ์ผ ํฐ ๊ฒฝํ–ฅ, pstretch๋Š” ์ž‘์Œ(์ƒ์Šนdrift์˜ํ–ฅ..)
	- sb4
		- pstretch์—์„œ EAG๊ฐ’์ด ์ œ์ผ ํฐ ๊ฒฝํ–ฅ(ch7์—์„œ๋Š” 2๋ฒˆ์งธ)
		- PIP-D์˜ ๋ชจ์–‘ ์œ ์‚ฌ์„ฑ..
	- sb19
		- str vs pst ๋ชจ์–‘ ์œ ์‚ฌ์„ฑ + squat 1๋ฒˆ์งธ ์‹œ๋„์—์„œ์˜ ์•ˆ์ •์ ์ธ ๊ทธ๋ž˜ํ”„ ๋ชจ์–‘. -> ๊ฐ€์žฅ secured ๋œ subject๋กœ ์ƒ๊ฐ๋จ.
- ๋น„์„ ํ˜•์  ๋ชจ์–‘์˜ ์œ ์‚ฌ์„ฑ์€ parallel paper์—์„œ ๊ตฐ์ง‘๋ถ„๋ฅ˜ ๋ชจ๋ธ๋กœ ๊ฒ€์ฆํ•ด๋ณด๊ฒ ๋‹ค
-